Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(2): 280-288, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232374

RESUMO

Signal amplification based on the mechanism of hybridization chain reaction (HCR) facilitates spatial exploration of gene regulatory networks by enabling multiplex, quantitative, high-resolution imaging of RNA and protein targets. Here, we extend these capabilities to the imaging of protein:protein complexes, using proximity-dependent cooperative probes to conditionally generate a single amplified signal if and only if two target proteins are colocalized within the sample. HCR probes and amplifiers combine to provide automatic background suppression throughout the protocol, ensuring that even if reagents bind nonspecifically in the sample, they will not generate amplified background. We demonstrate protein:protein imaging with a high signal-to-background ratio in human cells, mouse proT cells, and highly autofluorescent formalin-fixed paraffin-embedded (FFPE) human breast tissue sections. Further, we demonstrate multiplex imaging of three different protein:protein complexes simultaneously and validate that HCR enables accurate and precise relative quantitation of protein:protein complexes with subcellular resolution in an anatomical context. Moreover, we establish a unified framework for simultaneous multiplex, quantitative, high-resolution imaging of RNA, protein, and protein:protein targets, with one-step, isothermal, enzyme-free HCR signal amplification performed for all target classes simultaneously.


Assuntos
Diagnóstico por Imagem , RNA , Humanos , Animais , Camundongos , Hibridização de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico
3.
Sci Immunol ; 8(89): eadi8217, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922339

RESUMO

The IL-2 receptor α chain (IL-2Rα/CD25) is constitutively expressed on double-negative (DN2/DN3 thymocytes and regulatory T cells (Tregs) but induced by IL-2 on T and natural killer (NK) cells, with Il2ra expression regulated by a STAT5-dependent super-enhancer. We investigated CD25 regulation and function using a series of mice with deletions spanning STAT5-binding elements. Deleting the upstream super-enhancer region mainly affected constitutive CD25 expression on DN2/DN3 thymocytes and Tregs, with these mice developing autoimmune alopecia, whereas deleting an intronic region decreased IL-2-induced CD25 on peripheral T and NK cells. Thus, distinct super-enhancer elements preferentially control constitutive versus inducible expression in a cell type-specific manner. The mediator-1 coactivator colocalized with specific STAT5-binding sites. Moreover, both upstream and intronic regions had extensive chromatin interactions, and deletion of either region altered the super-enhancer structure in mature T cells. These results demonstrate differential functions for distinct super-enhancer elements, thereby indicating previously unknown ways to manipulate CD25 expression in a cell type-specific fashion.


Assuntos
Interleucina-2 , Fator de Transcrição STAT5 , Animais , Camundongos , Elementos Facilitadores Genéticos/genética , Interleucina-2/genética , Interleucina-2/farmacologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Receptores de Interleucina-2 , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
4.
Nat Commun ; 14(1): 5382, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666819

RESUMO

Regulatory T cells (Treg) are CD4+ T cells with immune-suppressive function, which is defined by Foxp3 expression. However, the molecular determinants defining the suppressive population of T cells have yet to be discovered. Here we report that the cell surface protein Lrig1 is enriched in suppressive T cells and controls their suppressive behaviors. Within CD4+ T cells, Treg cells express the highest levels of Lrig1, and the expression level is further increasing with activation. The Lrig1+ subpopulation from T helper (Th) 17 cells showed higher suppressive activity than the Lrig1- subpopulation. Lrig1-deficiency impairs the suppressive function of Treg cells, while Lrig1-deficient naïve T cells normally differentiate into other T cell subsets. Adoptive transfer of CD4+Lrig1+ T cells alleviates autoimmune symptoms in colitis and lupus nephritis mouse models. A monoclonal anti-Lrig1 antibody significantly improves the symptoms of experimental autoimmune encephalomyelitis. In conclusion, Lrig1 is an important regulator of suppressive T cell function and an exploitable target for treating autoimmune conditions.


Assuntos
Autoimunidade , Colite , Animais , Camundongos , Linfócitos T CD4-Positivos , Linfócitos T Reguladores , Transferência Adotiva , Fatores de Transcrição , Fatores de Transcrição Forkhead/genética
5.
JCI Insight ; 8(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37643018

RESUMO

The role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that ST6 ß-galactoside α2,6 sialyltransferase 1 (ST6GAL1), which adds α2,6-linked sialic acids to N-glycosylated proteins, was upregulated in patients with early-stage PDAC and was further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft experiments with human PDAC cells. Additionally, we developed a genetically engineered mouse (GEM) model with transgenic expression of ST6GAL1 in the pancreas and found that mice with dual expression of ST6GAL1 and oncogenic KRASG12D had greatly accelerated PDAC progression compared with mice expressing KRASG12D alone. As ST6GAL1 imparts progenitor-like characteristics, we interrogated ST6GAL1's role in acinar to ductal metaplasia (ADM), a process that fosters neoplasia by reprogramming acinar cells into ductal, progenitor-like cells. We verified ST6GAL1 promotes ADM using multiple models including the 266-6 cell line, GEM-derived organoids and tissues, and an in vivo model of inflammation-induced ADM. EGFR is a key driver of ADM and is known to be activated by ST6GAL1-mediated sialylation. Importantly, EGFR activation was dramatically increased in acinar cells and organoids from mice with transgenic ST6GAL1 expression. These collective results highlight a glycosylation-dependent mechanism involved in early stages of pancreatic neoplasia.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Carcinoma Ductal Pancreático/patologia , Receptores ErbB/genética , Metaplasia/patologia , Sialiltransferases/genética , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD
6.
Nat Immunol ; 24(9): 1458-1472, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563311

RESUMO

Runx factors are essential for lineage specification of various hematopoietic cells, including T lymphocytes. However, they regulate context-specific genes and occupy distinct genomic regions in different cell types. Here, we show that dynamic Runx binding shifts in mouse early T cell development are mostly not restricted by local chromatin state but regulated by Runx dosage and functional partners. Runx cofactors compete to recruit a limited pool of Runx factors in early T progenitor cells, and a modest increase in Runx protein availability at pre-commitment stages causes premature Runx occupancy at post-commitment binding sites. This increased Runx factor availability results in striking T cell lineage developmental acceleration by selectively activating T cell-identity and innate lymphoid cell programs. These programs are collectively regulated by Runx together with other, Runx-induced transcription factors that co-occupy Runx-target genes and propagate gene network changes.


Assuntos
Redes Reguladoras de Genes , Linfócitos T , Camundongos , Animais , Linfócitos T/metabolismo , Imunidade Inata/genética , Linfócitos/metabolismo , Subunidades alfa de Fatores de Ligação ao Core/genética , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Diferenciação Celular/genética
7.
J Immunol ; 210(11): 1667-1676, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37093664

RESUMO

Effector CD4 T cells are central to the development of autoimmune chronic inflammatory diseases, yet factors that mediate pathogenicity remain ill-defined. Single-nucleotide polymorphisms in the human STAT4 locus are associated with susceptibility to multiple autoimmune disorders, and Stat4 is linked to the pathogenic Th17 gene signature; however, Th17 cells differentiate independently of STAT4. Hence the interplay between STAT4 and CD4 T cell function, especially Th17 cells, during autoimmune disease is unclear. In this article, we demonstrate that CD4 T cell-intrinsic STAT4 expression is essential for the induction of autoimmune CNS inflammation in mice, in part by regulating the migration of CD4 T cells to the inflamed CNS. Moreover, unbiased transcriptional profiling revealed that STAT4 controls the expression of >200 genes in Th17 cells and is important for the upregulation of genes associated with IL-23-stimulated, pathogenic Th17 cells. Importantly, we show that Th17 cells specifically require STAT4 to evoke autoimmune inflammation, highlighting, to our knowledge, a novel function for STAT4 in Th17 pathogenicity.


Assuntos
Linfócitos T CD4-Positivos , Encefalomielite Autoimune Experimental , Humanos , Camundongos , Animais , Células Th17 , Células Th1 , Virulência , Inflamação , Diferenciação Celular , Fator de Transcrição STAT4/metabolismo
8.
Front Immunol ; 14: 1108368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817475

RESUMO

T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.


Assuntos
Redes Reguladoras de Genes , Linfócitos T , Camundongos , Animais , Linfócitos T/metabolismo , Imunidade Inata , Linhagem da Célula/genética , Receptores Notch/metabolismo , Linfócitos/metabolismo
9.
Biochem Biophys Res Commun ; 640: 32-39, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36502629

RESUMO

Although the T helper 2 (Th2) subset is a critical player in the humoral immune response to extracellular parasites and suppression of Th1-mediated inflammation, Th2 cells have been implicated in allergic inflammatory diseases such as asthma, allergic rhinitis, and atopic dermatitis. GATA binding protein 3 (GATA3) is a primary transcription factor that mediates Th2 differentiation and secretion of Th2 cytokines, including IL-4, IL-5, and IL-13. Here, a nucleus-deliverable form of GATA3-transcription modulation domain (TMD) (ndG3-TMD) was generated using Hph-1 human protein transduction domain (PTD) to modulate the transcriptional function of endogenous GATA3 without genetic manipulation. ndG3-TMD was shown to be efficiently delivered into the cell nucleus quickly without affecting cell viability or intracellular signaling events for T cell activation. ndG3-TMD exhibited a specific inhibitory function for the endogenous GATA3-mediated transcription, such as Th2 cell differentiation and Th2-type cytokine production. Intranasal administration of ndG3-TMD significantly alleviated airway hyperresponsiveness, infiltration of immune cells, and serum IgE level in an OVA-induced mouse model of asthma. Also, Th2 cytokine secretion by the splenocytes isolated from the ndG3-TMD-treated mice substantially decreased. Our results suggest that ndG3-TMD can be a new therapeutic reagent to suppress Th2-mediated allergic diseases through intranasal delivery.


Assuntos
Asma , Fator de Transcrição GATA3 , Hipersensibilidade Respiratória , Animais , Humanos , Camundongos , Administração Intranasal , Asma/terapia , Núcleo Celular/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fator de Transcrição GATA3/administração & dosagem , Fator de Transcrição GATA3/química , Camundongos Endogâmicos BALB C , Ovalbumina , Hipersensibilidade Respiratória/terapia , Células Th2
10.
Immunol Med ; 45(2): 119-127, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35130134

RESUMO

Th17 cells are implicated in the pathogenesis of several autoimmune diseases. During the inflammation, Th17 cells exposed to IL-12 can shift towards the Th1 phenotype. These shifted cells are defined as 'non-classic Th1 cells'. Th17-derived non-classic Th1 cells play a critical role in late-onset chronic inflammatory diseases and are more pathogenic than the unshifted Th17 cells. Eomes is a transcription factor highly expressed in non-classic Th1 cells. To study the functional role of Eomes without genetic alteration, novel recombinant protein, ntEomes-TMD, was generated by fusing TMD of Eomes and Hph-1-PTD that facilitate intracellular delivery of its cargo molecule. ntEomes-TMD was delivered into the nucleus of the cells without influencing the T cell activation and cytotoxicity. ntEomes-TMD specifically inhibited the Eomes- and ROR-γt-mediated transcription and suppressed the Th1 and Th17 differentiation. Interestingly, ntEomes-TMD blocked the generation of non-classic Th1 cells from Th17 cells, leading to the inhibition of IFN-γ and GM-CSF secretion. In EAE, ntEomes-TMD alleviated the symptoms of EAE, and the combination treatment using ntEomes-TMD and anti-IL-17 mAb together showed better therapeutic efficacy than anti-IL-17 mAb treatment. The results suggest that ntEomes-TMD can be a new therapeutic reagent for treating chronic inflammatory diseases associated with non-classic Th1 cells.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Inflamação , Células Th1/metabolismo , Células Th1/patologia , Células Th17/metabolismo , Células Th17/patologia
11.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671455

RESUMO

After avulsion and replantation, teeth are at risk of bone and root resorption. The present study aimed to demonstrate that the intra-nuclear transducible form of transcription modulation domain of p65 (nt-p65-TMD) can suppress osteoclast differentiation in vitro, and reduce bone resorption in a rat model of tooth replantation. Cell viability and nitric oxide release were evaluated in RAW264.7 cells using CCK-8 assay and Griess reaction kit. Osteoclast differentiation was evaluated using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and tartrate-resistant acid phosphatase (TRAP) staining. Thirty-two maxillary rat molars were extracted and stored in saline (n = 10) or 10 µM nt-p65-TMD solution (n = 22) before replantation. After 4 weeks, specimens were scored according to the inflammatory pattern using micro-computed tomography (CT) imaging and histological analyses. nt-p65-TMD treatment resulted in significant reduction of nitric oxide release and osteoclast differentiation as studied using PCR and TRAP staining. Further, micro-CT analysis revealed a significant decrease in bone resorption in the nt-p65-TMD treatment group (p < 0.05). Histological analysis of nt-p65-TMD treatment group showed that not only bone and root resorption, but also inflammation of the periodontal ligament and epithelial insertion was significantly reduced. These findings suggest that nt-p65-TMD has the unique capabilities of regulating bone remodeling after tooth replantation.


Assuntos
Núcleo Celular/metabolismo , Reimplante Dentário , Fator de Transcrição RelA/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , Camundongos , Modelos Animais , Dente Molar/diagnóstico por imagem , Óxido Nítrico/metabolismo , Osteoclastos/metabolismo , Células RAW 264.7 , Ratos , Transdução Genética , Microtomografia por Raio-X
12.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33479171

RESUMO

Runt domain-related (Runx) transcription factors are essential for early T cell development in mice from uncommitted to committed stages. Single and double Runx knockouts via Cas9 show that target genes responding to Runx activity are not solely controlled by the dominant factor, Runx1. Instead, Runx1 and Runx3 are coexpressed in single cells; bind to highly overlapping genomic sites; and have redundant, collaborative functions regulating genes pivotal for T cell development. Despite stable combined expression levels across pro-T cell development, Runx1 and Runx3 preferentially activate and repress genes that change expression dynamically during lineage commitment, mostly activating T-lineage genes and repressing multipotent progenitor genes. Furthermore, most Runx target genes are sensitive to Runx perturbation only at one stage and often respond to Runx more for expression transitions than for maintenance. Contributing to this highly stage-dependent gene regulation function, Runx1 and Runx3 extensively shift their binding sites during commitment. Functionally distinct Runx occupancy sites associated with stage-specific activation or repression are also distinguished by different patterns of partner factor cobinding. Finally, Runx occupancies change coordinately at numerous clustered sites around positively or negatively regulated targets during commitment. This multisite binding behavior may contribute to a developmental "ratchet" mechanism making commitment irreversible.


Assuntos
Linhagem da Célula/imunologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Células Precursoras de Linfócitos T/imunologia , Linfócitos T/imunologia , Transcriptoma , Animais , Diferenciação Celular , Linhagem da Célula/genética , Subunidade alfa 2 de Fator de Ligação ao Core/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Masculino , Camundongos , Células Precursoras de Linfócitos T/citologia , Cultura Primária de Células , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Linfócitos T/classificação , Linfócitos T/citologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia
13.
J Cell Biol ; 219(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32756905

RESUMO

Notch signaling is the dominant intercellular signaling input during the earliest stages of T cell development in the thymus. Although Notch1 is known to be indispensable, we show that it does not mediate all Notch signaling in precommitment stages: Notch2 initially works in parallel to promote early murine T cell development and antagonize other fates. Notch-regulated target genes before and after T lineage commitment change dynamically, and we show that this partially reflects shifts in genome-wide DNA binding by RBPJ, the transcription factor activated by complex formation with the Notch intracellular domain. Although Notch signaling and transcription factor PU.1 can activate some common targets in precommitment T progenitors, Notch signaling and PU.1 activity have functionally antagonistic effects on multiple targets, delineating separation of pro-T cells from alternative PU.1-dependent fates. These results define a distinct mechanism of Notch signal response that distinguishes the initial stages of murine T cell development.


Assuntos
Proteínas Proto-Oncogênicas/genética , Receptor Notch1/genética , Receptor Notch2/genética , Linfócitos T/metabolismo , Transativadores/genética , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Humanos , Camundongos , Transdução de Sinais/genética , Linfócitos T/imunologia
14.
Cell Rep ; 30(6): 1898-1909.e4, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049019

RESUMO

Understanding metabolic pathways that regulate Th17 development is important to broaden therapeutic options for Th17-mediated autoimmunity. Here, we report a pivotal role of mitochondrial oxidative phosphorylation (OXPHOS) for lineage specification toward pathogenic Th17 differentiation. Th17 cells rapidly increase mitochondrial respiration during development, and this is necessary for metabolic reprogramming following T cell activation. Surprisingly, specific inhibition of mitochondrial ATP synthase ablates Th17 pathogenicity in a mouse model of autoimmunity by preventing Th17 pathogenic signature gene expression. Notably, cells activated under OXPHOS-inhibited Th17 conditions preferentially express Foxp3, rather than Th17 genes, and become suppressive Treg cells. Mechanistically, OXPHOS promotes the Th17 pioneer transcription factor, BATF, and facilitates T cell receptor (TCR) and mTOR signaling. Correspondingly, overexpression of BATF rescues Th17 development when ATP synthase activity is restricted. Together, our data reveal a regulatory role of mitochondrial OXPHOS in dictating the fate decision between Th17 and Treg cells by supporting early molecular events necessary for Th17 commitment.


Assuntos
Mitocôndrias/metabolismo , Fosforilação Oxidativa , Receptores de Antígenos de Linfócitos T/metabolismo , Células Th17/imunologia , Animais , Diferenciação Celular , Camundongos , Transdução de Sinais
15.
J Exp Med ; 215(7): 1803-1812, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29915024

RESUMO

Dysregulated CD4 T cell responses are causally linked to autoimmune and chronic inflammatory disorders, yet the cellular attributes responsible for maintaining the disease remain poorly understood. Herein, we identify a discrete population of effector CD4 T cells that is able to both sustain and confer intestinal inflammation. This subset of pathogenic CD4 T cells possesses a unique gene signature consistent with self-renewing T cells and hematopoietic progenitor cells, exhibits enhanced survival, and continually seeds the terminally differentiated IFNγ-producing cells in the inflamed intestine. Mechanistically, this population selectively expresses the glycosyltransferase ST6Gal-I, which is required for optimal expression of the stemness-associated molecule TCF1 by effector CD4 T cells. Our findings indicate that the chronicity of T cell-mediated inflammation is perpetuated by specific effector CD4 T cells with stem-like properties.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Inflamação/imunologia , Intestinos/patologia , Células-Tronco/imunologia , Animais , Diferenciação Celular , Autorrenovação Celular , Sobrevivência Celular , Doença Crônica , Colite/imunologia , Colite/patologia , Perfilação da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Inflamação/patologia , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Sialiltransferases/metabolismo , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
16.
Biochem Biophys Res Commun ; 464(3): 711-7, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26159927

RESUMO

Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1ß, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration.


Assuntos
NF-kappa B/antagonistas & inibidores , Sepse/terapia , Animais , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Feminino , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Lipopolissacarídeos/toxicidade , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/imunologia , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Sepse/etiologia , Sepse/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Transcrição Gênica , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...